AKM Calibrations

NC License # 032-1057-1 Registration # S000454

AKM Calibrations/AKM Services LLC

1006 Communications Dr., Suite A, Durham NC 27704 Shipping Address: 2608 Erwin Rd Suite 148-243, Durham NC 27705

calibrations@akmcalibrations.com 919.594.0208

Calibration Report/Certification

REPORT# 114400

PREPARED FOR: Mazur Instruments

We certify that the following meter was calibrated on the indicated date using an NIST traceable radiation field source

Model Mazur PRM-8000

Detector 1 Internal GM (LND 712)

Detector 2 None

ID None

SN 81744

Date 8/23/2014

PO# Vince Mazur

Contact Vince Mazur

Calibrated By Robert D. Pearlstein

PRE-CALIBRATION CHECK

Contamination No Ves; returned without calibration Batteries

☐ OK ☐ Replaced ☐ Used AC Power Audio Mo OK Malfunction No Audio Function Detector ⋈ OK ☐ Malfunction ☐ Repaired Cables

OK

Malfunction

Repaired Switches

OK

Malfunction

Repaired HV Circuit ☐ OK As Received ☐ Reset to 900V ☐ Repaired Pulse Detector

OK

Malfunction

Repaired

Electrometer OK Malfunction Repaired

CALIBRATION CONDITIONS Temperature (°F) 74 Relative Humidity 66%

Radiation Beam / Detector Alignment: ⋈ normal to detector long axis ⋈ normal to bottom surface parallel to detector long axis

normal to front surface normal to side surface normal to detector window normal to top surface Shield/Build-up Cap

□ Shield closed ⋈ No shield

☐ Shield open ☐ Build-up cap used

1008 mbar

ACCURACY

Determined using a NIST Traceable Cs-137 source (collimated beam, gamma emission)

Scale: mR/hr

Range / Exposure Rate 0.5 to 200 Error ≤ 10%

Note: Detector response may vary with energy of the photon radiation. Consult manufacturer's technical sheet for details.

OBSERVATIONS / CALIBRATION FACTORS

Range	Scale	"True"*	As Found	As Returne	d SEM**	CalFact***
0.1 to 1	mR/hr	0.5	0.497	0.497	0.003	1.01
1 to 10	mR/hr	2.0	1.94	1.94	0.02	1.03
1 to 10	mR/hr	5.0	4.86	4.86	0.03	1.03
10 to 100	mR/hr	20	20.0	20.0	0.1	1.00
10 to 100	mR/hr	50	49.7	49.7	0.3	1.01
100 to 1000	mR/hr	100	100	100	0.7	1.00
100 to 1000	mR/hr	150	151	151	0.2	0.99
100 to 1000	mR/hr	200	201	201	1	1.00
100 to 1000	mR/hr	500	>200	>200	ND	ND
100 to 1000	mR/hr	1000	>200	>200	ND	ND
	W	**	HOWARD COMPANY OF THE PARTY OF		CONT. LINE	

^{* &}quot;True" Exposure Rate/Exposre values calculated from NIST traceable source calibration measurements after

NA = Not Applicable; ND = Not Determined; NL = Non-Linear; Over = OverRange; PPM = electronically generated pulses per minute (PPS = per second).

correcting for source decay, filtration, and source-detector distance (to center of detector)

** SEM = Standard Error of Mean, N = 5 to 10 Observations *** CalFact = "True" / As Returned (Corrected = Indicated X CalFact)

COMMENTS

CALIBRATION SOURCES

Cesium 137 gamma Source #773-555

Approximate Point Source Horizontal collimated beam. Exposure through bottom surface/side wall of internal detector.

Not Available

Pressure (mmHg)

CHECK SOURCE

No Check Source

PRECISION/CONSTANCY

Readout Stability (Relative Standard Deviation)

Repeated Measurements of Same Field Obs 1 Obs 2 Obs 3 **Test Result** 49 mR/h 50mR/h 49 mR/h OK

1.7% @ 0.5 mR/hr RSD = StDev x 100 / Mean of 5 to 10 observation made

Meter powered down and re-positioned in radiation field between each observation

at 3-5 second intervals.

ENERGY RESPONSE Photons

Typical (from Manufacturer's Technical Specifications, not measured)

Not Available

DETECTOR LINEARITY

Exposure Rate

Linear to at least

□ Linear over entire operating range □ Linear to at least 200 mR/hr

Count Rate (Radiation Response) Exposure

=)	Rate	Rate
- 1		

Count

Meter calibrated for survey of photon radiation fields. Readings should be corrected for energy response if using for radionuclides other than Cs-137.

Reviewed by:

Robert D. Pearlstein Ph.D.,

SUGGESTED RECALIBRATION DATE: August 23, 2015